Facile *â***-Alkyl and** *â***-Hydride Elimination in the Nickel-Catalyzed Annulation of o-Iodophenyl Ketones and Aldehydes with Bicyclic Alkenes**

Paritosh Shukla and Chien Hong Cheng*

*Department of Chemistry, National Tsing Hua Uni*V*ersity, Hsinchu 30013, Taiwan chcheng@mx.nthu.edu.tw*

Received May 1, 2006

ABSTRACT

^o-Iodoaryl aldehydes react with bicyclic alkenes in the presence of NiBr2(dppe) and Zn powder in acetonitrile at 80 °**C undergoing annulation to give polycyclic ketone derivatives. Surprisingly, ^o-iodoaryl alkyl ketones also react with bicyclic alkenes to form polycyclic ketones with structures the same as those from the corresponding ^o-iodoaryl aldehydes.**

Selective C-C bond formation employing transition-metal complexes as catalysts is at the core of modern synthetic chemistry.1 Carbocyclization being an excellent method to accomplish desired C-C bond formation, reports abound in this field.2 Conversely, reports pertaining to transition-metalcatalyzed $C-C$ bond cleavage leading to β -alkyl elimination are few.³ However, some reports regarding catalytic β -alkyl eliminations in strained⁴ and other⁵ systems are worth noting. Our long interest in nickel-promoted cyclizations⁶ prompted us to investigate the reaction of *ortho*-iodophenyl carbonyl compounds with norbornene derivatives. Recently, Larock and co-workers reported a palladium-catalyzed annulation of *o*-iodobenzonitriles with norbornene to give polycyclic ketones.7 While extending our reaction of aldehydes to ketones, we discovered an unprecedented *â*-alkyl elimination. Amazingly, the products of reaction of aldehydes or ketones with the same bicyclic alkene were the same, i.e., ketones (Scheme 1). To the best of our knowledge, such β -alkyl

eliminations are unknown in the case of nickel-catalyzed reactions.

We first set out to examine the products obtained from the nickel-catalyzed reaction of various *o*-iodobenzaldehydes with a variety of bicyclic alkenes; the results are summarized in Table 1. Thus, treatment of 2-iodobenzaldehyde (**1a**) with

ORGANIC

⁽¹⁾ Hegedus, L. S. In *Comprehensive Organometallic Chemistry II*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12. Davies, S. G. In *Organotransition Metal Chemistry*-*Application to Organic Synthesis*; Pergamon: Oxford, U.K., 1982.

^{(2) (}a) Tsuji, J. In *Palladium Reagents and Catalysts: Inno*V*ations in Organic Synthesis*; John Wiley & Sons: New York, 1995. (b) Heck, R. F. In *Palladium Reagents in Organic Synthesis*; Academic Press: New York, 1985. (c) Negishi, E.; Copéret, C.; Ma, S.; Liou, S.-Y.; Liu, F. *Chem. Rev.*
1996. 96. 365–393. (d) Li. J. J.: Gribble. G. W. In *Palladium in Heterocyclic* **¹⁹⁹⁶**, *⁹⁶*, 365-393. (d) Li, J. J.; Gribble, G. W. In *Palladium in Heterocyclic Chemistry*; Pergamon: Oxford, 2000. (e) Bäckvall, J.-E. Pure Appl. Chem. **¹⁹⁹²**, *⁶⁴*, 429-437.

⁽³⁾ For a recent review on catalytic cleavage of a $C-C$ bond including *^â*-alkyl eliminations, see: Jun, C.-H. *Chem. Soc. Re*V. **²⁰⁰⁴**, *³³*, 610-⁶¹⁸ and references therein.

entry	$\mathbf{1}$	bicyclic alkene 2	product 3	yield ^b $(\%)$
$\,1$	ĺ сно 1a	2a		3a 80
\overline{c}	1a	2 _b		3b 77
3	1a	2c		3e 75
$\overline{4}$	2HO 1 _b	2 _b		$3d$ 70
5	1a	2d		3e 68
6	1a	2e		3f 74
7	Ķ 4a	2a		3a 70
8	4a	2 _b		3b 61
9	4a	2c		3c 52
10	MeO n-Bu å 4b	2a		3h 63
11	4b	2 _b		3i 67
12	4b	2c		3j 71
13	MeO $nC_{15}H_{31}$ 4c	2a		3h 55
14	4c	2 _b		3i 74
15	MeO CH ₂ Ph X 4d	2a		3h 50
16	4d	2 _b		3i 58

^a Unless stated otherwise, all reactions were conducted using iodo compound 1 or 4 (1.0 mmol), alkene 2 (3.0 mmol), NiBr₂(dppe) (0.10 mmol), and zinc powder (2.0 mmol), in CH3CN at 80 °C for 12 h. *^b* Isolated yields.

norbornene $(2a)$ in the presence of Ni $(dppe)Br₂$ catalyst and Zn powder, in acetonitrile at 80 °C, gave annulated product **3a** in 80% isolated yield. Norbornadiene (**2b**) also reacted similarly with **1a** to furnish **3b** in 77% yield. When benzonorbornadiene (**2c**) was treated with **1a**, polycyclic ketone **3c** was obtained in 75% yield. Electron-donating

6-iodopiperonal **1b** also underwent annulation with bicyclic alkene **2b** to furnish the expected ketone product **3d** in 70% yield. The reaction of **1a** with bicyclic alkene **2d**, where *n* $= 2$ (Scheme 1), also proceeded smoothly resulting in the formation of product **3e** in 68% yield. Likewise, treatment of **1a** with naphthonorbornadiene **2e** resulted in the formation of **3f** in 74% isolated yield.

Encouraged by these results, we extended the present catalytic annulation to include *o*-iodophenyl alkyl ketones as substrates. To our surprise, the reaction of these ketones with norbornene derivatives under similar catalytic conditions gave the same keto products as those from the corresponding *o*-iodobenzaldehydes. Thus, 2-iodoacetophenone (**4a**) reacted with norbornene $(2a)$ in the presence of Ni $(d$ ppe)Br₂ and Zn powder in acetonitrile at 80 °C to form keto product **3a** (entry 1, Table 2), which is the same as that from the reaction of *o*-iodobenzaldehyde (**1a**) with norbornene, in 70% yield. The expected annulated indenol derivative⁸ was not observed. Similarly, the reaction of **4a** with norbornadiene (**2b**) afforded keto product **3b** in 61% yield. In the same vein, benzonorbornadiene **2c** underwent annulation with **4a** to provide multicyclic keto product **3c** in 52% yield. In all of these cyclization reactions, a dealkylation step presumably occurred during the process of catalysis prior to the formation of the final product (Table 2, entries $1-3$).

To further understand the nature and scope of the above annulation reactions, we prepared several different alkyl *^o*-iodo-*p-*anisyl ketones, **4b**-**d**, for the cyclization with norbornene derivatives. The reaction of *n-*butyl *o*-iodo-*p*anisyl ketone (**4b**) with **2a**-**^c** proceeded smoothly under similar catalytic conditions to give the corresponding ketones **3h**-**^j** in 71∼63% yields (entries 10-12), respectively. Clearly, the butyl group bonded to the carbonyl in **4b** was cleaved during these catalytic reactions. In a similar manner,

(4) (a) Nishimura, T.; Uemura, S. *J. Am. Chem. Soc.* **²⁰⁰⁰**, *¹²²*, 12049- 12050. (b) Nishimura, T.; Uemura, S. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 11010- 11011. (c) Nishimura, T.; Ohe, K.; Uemura, S. *J. Am. Chem. Soc*. **2000**, *¹²²*, 12049-12050. (d) Murakami, M.; Takahashi, K.; Amii, H.; Ito, Y. *J. Am. Chem. Soc*. **¹⁹⁹⁷**, *¹¹⁹*, 9307-9308 and references therein. (e) Matsuda, T.; Makino, M.; Murakami, M. *Org. Lett.* **²⁰⁰⁴**, *⁶*, 1257-1259. (f) Murakami, M.; Ashida, S.; Matsuda, T. *J. Am. Chem. Soc.* **²⁰⁰⁶**, *¹²⁸*, 6932- 6933.

(5) (a) Kondo, T.; Kodoi, K.; Nishinaga, E.; Okada, T.; Morisaki, Y.; Watanabe, Y.; Mitsudo, T. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 5587-5588. (b) Terao, Y.; Wakui, H.; Satoh, T.; Miura, M.; Nomura, M. *J. Am. Chem. Soc*. **²⁰⁰¹**, *¹²³*, 10407-10408. (c) Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. *Org. Lett.* **²⁰⁰³**, *⁵*, 2997-2999. (d) Jun, C.-H.; Lee, H.; Lim, S. G. *J. Am. Chem. Soc.* **²⁰⁰¹**, *¹²³*, 751-752. (e) Terao, Y.; Wakui, H.; Kawasaki, S.; Satoh, T.; Miura, M.; Nomura, M. *J. Am. Chem. Soc*. **2004**, *¹²⁶*, 8658-8659. (f) Harayama, H.; Kuroki, T.; Kimura, M.; Tanaka, S.; Tamaru, Y. *Angew. Chem., Int. Ed*. *Engl.* **1997**, *36*, 2352 and references therein.

(6) (a) Rayabarapu, D. K.; Cheng, C.-H. *J. Am. Chem. Soc*. **2002**, *124*, ⁵⁶³⁰-5631. (b) Rayabarapu, D. K.; Shukla, P.; Cheng, C. H. *Org. Lett*. **²⁰⁰³**, *⁵*, 4903-4906. (c) Jeevanandam, A.; Korivi, R. P.; Huang, I.-W.; Cheng, C.-H. *Org. Lett*. **²⁰⁰²**, *⁴*, 807-810. (d) Shanmugasundaram, M.; Wu, M.-S.; Cheng, C.-H. *Org. Lett*. **²⁰⁰¹**, *³*, 4233-4236. (e) Hsiao, T.-Y.; Santhosh, K. C.; Liou, K.-F.; Cheng, C.-H. *J. Am. Chem. Soc*. **1998**, *120*, ¹²²³²-12236. (f) Rayabarapu, D. K.; Cheng, C.-H. *Chem.*-*Eur. J*. **²⁰⁰³**, *9*, 3164. (g) Rayabarapu, D. K.; Chiou, C.-F.; Cheng, C.-H. *Org. Lett*. **2002**, *⁴*, 1679-1682. (h) Huang, D.-J.; Rayabarapu, D. K.; Li, L.-P.; Sambaiah, T.; Cheng, C.-H. *Chem.*-*Eur. J*. **²⁰⁰⁰**, *⁶*, 3706-3713. (7) (a) Larock, R. C.; Tian, Q.; Pletnev, A. A. *J. Am. Chem. Soc*. **1999**,

¹²¹, 3238-3239. (b) Pletnev, A. A.; Tian, Q.; Larock, R. C. *J. Org. Chem*. **²⁰⁰²**, *⁶⁷*, 9276-9287.

(8) (a) Rayabarapu, D. K.; Cheng, C. H. *Chem. Commun*. **²⁰⁰²**, 942- 944. (b) Rayabarapu, D. K.; Yang, C.-H.; Cheng, C.-H. *J. Org. Chem*. **2003**, *⁶⁸*, 6726-6731.

the very long-chain ketone, 1-(*o*-iodo-*p-*anisyl)hexadecan-1-one (**4c**), underwent dealkylative annulation with **2a** and **2b** successfully, giving rise to cyclic ketones **3h** and **3i**, respectively (entries 13 and 14), in decent yields. Finally, the reaction of *o*-iodoanisyl ketone **4d** consisting of a benzyl moiety, with **2a** and **2b**, also furnished the same annulated ketones **3h** and **3i**, respectively (entries 15 and 16), in moderate yields. To see the fate of the benzyl group in **4d** after reaction, the reaction mixture of **4d** with **2a** was carefully analyzed leading to the isolation of product **5d** in 37% yield, in addition to product **3h**. It should be noted that the catalytic reaction does not work for the reaction of *o-*iodobenzophenone and *o-*iodophenyl 2-thienyl ketone with **2a**, indicating that the annulation is limited to alkyl *o*-iodoaryl ketones.

On the basis of the foregoing observations and the established nickel chemistry, we propose the mechanistic pathway shown in Scheme 2 to account for the present

dealkylative annulation reaction. The catalytic reaction is likely initiated by the reduction of Ni(II) to Ni(0). Oxidative addition of the *o-*iodoaryl ketone to Ni(0) to give intermediate **6**, coordination, and insertion of a norbornene molecule lead to the formation of **7**. Intramolecular addition of the norbornenyl group to the keto moiety gives a cyclized alkoxy intermediate **8**. ⁶ After this step, *â*-alkyl elimination occurs to yield the observed ketone product 3 and a Ni^{II} alkyl species **9**. The details of the fate of the alkyl group in the Ni^H alkyl species are not entirely clear. For the alkyl species without a *â*-hydrogen, a possible route is the transfer of the alkyl group in **9** to another molecule of intermediate **6** to afford **10**. Reductive elimination of **10** leads to product **5**. Similar pathways were proposed previously for the palladiumcatalyzed arylation of *t-*butylcyclobutanols by aryl bromide that involved a β -alkyl elimination as the key step.^{4b} Strong evidence of the formation of **5** is the isolation of **5d** (Figure 1) in 37% yield from the reaction of **4d** with **2a**. The formation of **5** explains at least in part the low yields of products **3** from **4**. For the dealkylative annulation reac-

tion of long-chain alkyl ketones **4b** or **4c** with norbornene derivative **2**, we did not observe the corresponding product **5**. In these reactions, the Ni^H alkyl species 9 likely undergoes the facile β -hydrogen elimination to give the corresponding olefin. However, attempts to isolate the expected olefin failed.

The present dealkylative annulation is interesting in view of the fact that most β -alkyl eliminations occur with cyclobutanols leading to a C-C bond cleavage in the butanol rings. In the present nickel-catalyzed reactions, 1-alkylcyclopentenol is involved as a key intermediate and the $C-C$ bond between the alkyl and the α -carbon is cleaved in the catalytic reaction. To the best of our knowledge, this is the first time that such alkyl elimination was observed. A possible driving force for the present alkyl elimination is the large repulsion of the three bulky substituents on the tertiary alkoxide **8**. A β -alkyl elimination of this intermediate to give the final ketone product can greatly reduce the repulsion.

Scheme 2 can also be used to account for the reaction of *o-*iodoaryl aldehydes with norbornene derivatives catalyzed by nickel complexes. The major difference is that intermediate **8** undergoes *â*-hydride elimination to give ketone **3** instead of the *â*-alkyl elimination for the reaction of *o-*iodoaryl ketones with norbornene derivatives.

We have demonstrated a novel nickel-mediated carbocyclization involving *o*-iodoaryl ketones and aldehydes with a variety of bicyclic alkene derivatives to yield the same annulated ketone products. The reaction exhibits unique $C-C$ bond cleavage such that the alkyl group attached to the starting ketone compound undergoes *â*-alkyl elimination. Further studies to pinpoint the mechanistic aberrations and to broaden the scope of this interesting reaction are currently underway.

Acknowledgment. We thank the National Science Council of the Republic of China (NSC 93-2113-M-007-033) for the support of this research. P.S. would also like to thank St. Xavier's College, Ranchi, India, for providing study leave for the project.

Supporting Information Available: General experimental procedures, spectral data, and spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OL061051P